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A B S T R A C T   

The increasing peak load caused by climate change is challenging the electricity system reliability, and an ac-
curate forecast of peak load can provide necessary support for the infrastructure investment and resilience 
enhancement. To support China’s long-term power system planning, this study estimates the response functions 
of annual peak loads to maximum temperatures in China and then predicts the future peak loads under different 
scenarios. Key findings are summarized as follows: (1) There is a significantly positive correlation between the 
provincial highest temperatures and peak loads in China, and an increase of highest temperature by 1 ◦C will, on 
average, rise the peak load by 0.385 GW (2) The impacts of maximum temperature on the peak load vary 
substantially among different regions, and the impacts are the most significant in the Eastern China region. (3) 
The adoption and penetration of air conditioners is an important channel to materialize the impacts from 
temperature change to peak load. (4) The national peak load is forecasted to reach between 3807 GW and 6815 
GW by the end of this century, which will require an additional infrastructure investment of 275–617 billion 
yuan per year.   

1. Introduction 

Secure electricity supply plays a vital role in supporting the healthy 
development of modern economy, but the increasing peak load driven 
by climate change is challenging the stable power system operation (De 
and Wing, 2019; Wang et al., 2020). Power outages occur more 
frequently during extreme weather, such as the large-scale electricity 
interruption in eastern provinces of China caused by the Liqima typhoon 
in 2019, the serious power outages in Zhengzhou city induced by heavy 
rain in 2021, the rolling blackouts in California caused by extreme heat 
in 2020 and the blackouts in Texas induced by extreme cold weather in 
2021 (Pelley, 2021),1 The impacts of climate change on the electricity 
demand can be analyzed from different time scales. In the short run, the 
frequency and intensity of cooling equipment (air conditioners, 

refrigerators, etc.) usages will increase in response to the temperature 
rise effects (Biardeau et al., 2019). In the long run, not only the utili-
zation rate of cooling equipment will increase, but also the penetration 
rate of cooling equipment will rise (Bartos and Chester, 2015; Davis and 
Gertler, 2015). Most previous studies focused on investigating the im-
pacts of climate change on the total amount of electricity consumption, 
but only a few studies took the lead in estimating the impacts of climate 
change on peak load (Fan et al., 2019; Zheng et al., 2019). However, a 
good knowledge of the peak load response functions will contribute 
greatly to a wiser power system planning and investment, which can also 
increase the resilience and reliability of electricity system (Burillo et al., 
2017). 

Quantifying the impacts of climate change on the peak load is 
complex work. On the one hand, accurate data of the daily or annual 
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peak load is not easily accessible, especially for the developing countries 
(Chaturvedi et al., 2014). This is also the major reason why the existing 
studies in this field are mainly concentrated in the United States (Franco 
and Sanstad, 2008) and some European countries (Giannakopoulos 
et al., 2016; Mirasgedis et al., 2007; Thornton et al., 2016). On the other 
hand, the peak load can be affected by various factors, such as climate 
change, income levels, population and urbanization rates, etc (Bartos 
and Chester, 2015). Selecting proper models, which comprehensively 
integrates all these factors, are key to accurately assess the impacts of 
climate change on peak load (Kuster et al., 2017). 

China is the largest electricity consumer in the world, whose elec-
tricity consumption (7503 TWh) accounts for about 28% of the global 
total electricity consumption in 2019 (BP, 2020). At the same time, the 
national peak load in China has been growing rapidly in recent years, 
which reached 1003 GW in 2018. To meet this rising peak load, a large 
amount of money needs to be invested into the electricity supply 
infrastructure (generators, transmission and distribution lines, and 
transformers). The total investment into the electricity sector is 830 
billion yuan in 2019, equaling to 0.84% of the same year GDP in China.2 

With a further increase of the peak load, additional investment will be 
caused to build new generators and transmission lines. To provide 
support for the long-term power system planning in China, this paper 
plans to estimate the impacts of climate change on the national peak 
load, aiming at answering the following three questions:  

(1) How will the national peak load respond to the annual maximum 
temperature in China? What are the regional differences of these 
estimated responses?  

(2) What are potential channels of climate change impacts on the 
peak load?  

(3) How will the peak load in China evolve for the rest of this 
century? 

The rest of this paper is organized as follows: Section 2 shows the 
literature review. Section 3 describes the methodology and data. Section 
4 presents the empirical results and discussions. Section 5 summarizes 
the conclusions and proposes some policy recommendations. 

2. Literature review 

Analyzing the impacts of climate change on electricity consumption 
has become an increasing topic in the academic field. Based on the types 
of used methodologies, the existing studies can be classified into three 
categories, including econometric regression approach, artificial intel-
ligence approach and engineering-based simulation approach. 

Econometric regression approach is very popular in modeling the 
impacts of climate change on the electricity load. The popularly used 
models consist of linear regression models and non-linear regression 
models. Due to the simple calculation principle and strong explanatory 
capability, linear regression models are widely used in the load fore-
casting studies (Crowley and Joutz, 2020; Mirasgedis et al., 2007; Wang, 
2018). The non-linear regression models use fitting methods to estimate 
the response functions of peak load to temperatures, such as 
semi-parametric regression (Gupta, 2012). Moreover, these models 
generally use temperature chambers to carry out segmented regression 
and add higher order terms of temperatures (Bartos et al., 2016; Davis 
and Gertler, 2015). Most of them have found an asymmetric U-shaped 
curve of load response functions to temperatures (Auffhammer et al., 
2017). The ‘right-side’ load increase is caused by the cooling demand, 
while the ‘left-side’ rise is due to the heating demand (Wenz et al., 
2017). 

Artificial intelligence approach refers to the use of neural network 

models to simulate the influences of temperature changes on the elec-
tricity load. The advantage of this approach is that it can be used for non- 
linear forecasting, but it requires large amounts of data input from 
temperatures and other influencing factors. Behm et al. (2020) adopted 
the artificial neural network models to predict the load data of Germany 
and found that the peak load would reach 84 GW in 2025. He et al. 
(2015) combined neural network models and interval probability den-
sity method to quantify the probability of electricity density in China. 
Artificial intelligence approach has relatively higher accuracy when 
compared with other studies, but it is also criticized as a black box model 
and has weak interpretation ability. 

Engineering-based simulation approach estimates the impacts of 
climate change on the electricity load by simulating the energy con-
sumption of various end-use equipment in the buildings. The simulation 
approach can not only be used to simulate the peak load of a specific 
building, but it can also be employed to estimate the electricity load of 
all buildings within a region (Yao, 2020). As to the specific building load 
simulations, Ciancio et al. (2018) took climate factors into account and 
used EnergyPlus simulation program to forecast the hourly electricity 
demand of a single building. Dahanayake and Chow (2018) used the 
energy building simulation method to study the annual cooling load 
change for different buildings and scenarios in Hong Kong. As to the 
electricity simulations of all buildings at the regional level, Burillo et al. 
(2019) employed the simulation approach to analyze the peak load in 
Los Angeles, and found that the rising temperatures are expected to 
increase peak demand by 4–8% by 2060. Dirks et al. (2015) used 
Building Energy Demand Model (BEND) to estimate the peak load in 
Eastern grid in the United States, and found the peak load will increase 
by 18%–85% in all regions by the end of this century. Chaturvedi et al. 
(2014) combined the building energy consumption simulation with 
Global Change Assessment Model (GCAM) model to explore the 
long-term impact of climate change on power demand. However, this 
approach is more proper for modeling the electricity load in buildings, 
while it cannot be directly applied to estimate the total electricity load of 
a region or country. 

As to the influencing factors considered in the estimations of climate 
change on electricity load, income, population, industrial structure and 
urbanization rate are the four frequently considered factors (Allen et al., 
2016; Burillo et al., 2019; Willis, 2013). Miller et al. (2008) analyzed the 
impacts of income growth on the future peak power demand in Cali-
fornia in the United States, and found that the income per capita will 
contribute to a significant increase in the future peak power demand. 
Mirasgedis et al. (2007) found that GDP has a significant positive impact 
on the power load in Greece. Chaturvedi et al. (2014) simulated the 
global future building energy demand, and found that the urbanization 
and industrial structure are the main driving factors of global energy 
use. 

These previous studies can provide good support for our research, 
based on which we can estimate the impacts of climate change on the 
peak load in China. Compared with these previous studies, we 
contribute to the existing literature from the following two aspects. First, 
most studies focus on the impacts of climate change on the total elec-
tricity consumption, but our study is among the few studies which 
analyze the impacts of climate change on peak load. Understanding the 
influences of climate change on peak load is of great significance, which 
is helpful to formulate adaption and mitigation policies. On the one 
hand, compared with the total electricity consumption, peak load re-
sponds more sensitively to climate change (Auffhammer et al., 2017). 
On the other hand, peak load is an important basis for power system 
design and planning. In order to meet the peak demand, the “rule of 
thumb” of long-term infrastructure investment is to establish a capacity 
surplus of at least 15% of the peak load (Burillo et al., 2019). Second, 
most studies analyze the impacts of climate change factors and 
socio-economic factors on the future electricity load separately, while 
this study combines these two types of factors in the load projection by 
using the Shared Socio-economic Pathways (SSPs) and Representative 

2 The data is drawn from the list of basic data for electricity statistics in 2019 
from China Electricity Council (CEC), see https://cec.org.cn/. 
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Concentration Pathways (RCPs). 

3. Methodology 

3.1. Response function model of peak load to temperatures 

It is widely acknowledged that the response functions of electricity 
consumption to climate change exhibit asymmetric U-shaped curves 
(see Fig. 1), no matter for the total electricity consumption or the peak 
load (Auffhammer et al., 2017; Gupta, 2012; Mirasgedis et al., 2007; 
Wenz et al., 2017). For a specific region, the suitable temperature range 
locates between T1 and T2, indicating that there will not be any signif-
icant changes of peak load (P0) within this range. However, the peak 
load will increase significantly when the temperature is either above T2 
or below T1. 

Although the impacts of climate change on electricity consumption 
are non-linear, this study will use a linear model to estimate the dose 
response function of peak load. There are two reasons for our choices. 
First, the relationship between temperature and peak load is linear at the 
range of extremely high temperatures. As seen from previous studies, 
non-linear econometric models are often used if the [T1, T2] is within the 
temperature ranges in their studies, such as the quadratic regression 
analysis models (Bartos et al., 2016; Huang et al., 2012; Wenz et al., 
2017) and the piecewise linear fitting models (Auffhammer et al., 2017). 
However, linear models can also be used for estimating the response 
functions when the temperature is higher than T2 (Wenz et al., 2017). 
Second, studies prefer to use non-linear econometric models for the 
hourly, daily and monthly temperature data, while they are more likely 
to use linear regression models for the annual temperature data (Davis 
and Gertler, 2015). Given the research targets and the data availability, 
we plan to use a two-way fixed effect panel data model to investigate the 
response functions of peak load to the changes of maximum tempera-
ture, see equation (1). 3 

PLit = c + βTit +
∑K

k=1
γkXkit + αi + θt + εit (1)  

Where i is the provincial index; t is the year index; k is the control 
variable index; PLit is the peak load; Tit is the annual maximum tem-
perature; Xkit represents the different control variables; αi and θt repre-
sent the fixed effects of province and year respectively; εit is the 
disturbance term. 

3.2. Data 

This study employs a panel data of 31 provinces from 1998 to 2018 
to estimate the response functions of peak loads to maximum tempera-
tures.4 The annual peak load of different provinces is selected as the 
dependent variable. The key independent variable maximum tempera-
ture selects the average value of the annual maximum temperature of all 
meteorological stations in the same province. Based on the suggestions 
from Waite et al. (2017), this study considers four control variables, 
which includes total population (Allen et al., 2016), provincial GDP 
(Mirasgedis et al., 2007), the proportion of the secondary industry and 
the urbanization rate (Chaturvedi et al., 2014). The data sources and 
explanations are shown in Table 1. The peak electricity load data is 
drawn from the power dispatch reports from China Electricity Council 
(CEC). The annual maximum temperature data is obtained from China 
Meteorological Administration (CMA). The provincial GDP data have 
been converted to the year of 1998 using the Consumer Price Index 
(CPI), and the CPI index is drawn from National Bureau of Statistics 
(NBS) of China. All the data of control variables are got from different 
statistical yearbooks published by the National Bureau of Statistics in 
China. The data in Table 1 are used as inputs of the regression model and 
are processed by Stata version 14. 

To have a better understanding of the data used in this study, we 
have conducted a statistical analysis of the variables used in this study, 
see Table 2. 

4. Results and discussions 

4.1. The national response functions of peak load to climate change 

A stepwise regression approach is adopted to estimate the regression 
model by introducing variables into the model one by one, see Table 3. 
We can see that all the estimated coefficients are consistent with our 
expectations, no matter for the variables we’re interested in (annual 
maximum temperature) or for the other control variables. The R2 of 
Model (4) is the highest (0.943) among all the four regression results, so 
it is used to illustrate the impacts of climate change on the peak load. 

As seen from Table 3, the effects of maximum temperature on the 

Fig. 1. Response function curve of peak loads to temperatures.  

Table 1 
Explanations and data sources of variables used in this study.  

Variables Explanations Data sources 

PL  Annual peak load China Electricity Council 
T  Annual maximum temperature China Meteorological Data Service 

Centre 
SR  Proportion of secondary 

industry 
China Statistical Yearbook 

UR  Urbanization rate China Statistical Yearbook 
GDP  Gross Domestic Product China Statistical Yearbook 
POP  Total population at the end of 

year 
China Population Statistics Yearbook 

AC  Total numbers of air 
conditioners 

China statistical yearbook  3 There are two reasons why we only consider the maximum temperatures in 
the regression model. On the one hand, the annual peak load in most provinces 
of China occurs in summer rather than in winter. On the other hand, previous 
studies have found a linear relationship between maximum temperature and 
peak load and also only used maximum temperatures in estimating the peak 
load response functions (Wenz et al., 2017). Moreover, since the maximum 
temperature data in our study are all bigger than the comfortable temperature 
T2 (24 ◦C) in China, so only the load-temperature responses in the part of ‘S2’ in 
Fig. 1 is needed to be estimated. 

4 Due to the data availability problem, this study does not consider Hong 
Kong, Macao and Taiwan. 
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peak load are positive at the 1% significance level. In particular, a 1 ◦C 
increase in the maximum temperature will increase the peak load by an 
average of 0.385 GW. This result also indicates that the temperature rise 
of 1 ◦C will increase the peak load by 2.33% compared with the his-
torical average level. 5 Similar to the previous studies, the influence of 
temperature on peak load is greater than that of the total electricity 
consumption (Auffhammer et al., 2017). Taken the Guangzhou city as an 
example, the residential electricity consumption will increase by 0.9% 
for 1 ◦C of temperature rise (Zheng et al., 2019). Moreover, we have also 
compared our results with those from other countries or regions, see 
Table 4. We can see that our estimation result are very close to the re-
sults in Los Angeles (0.39 GW/◦C) and are slightly higher than 0.27 
GW/◦C in Phoenix (Burillo et al., 2017), which can prove the robustness 
of our results at a certain extent. 

As for the control variables, the directions of estimated coefficients 
are also consistent with those in previous studies. All the estimated co-
efficients of POP、UR、GDP are positive and statistically significant, 
indicating that the increase of population, urbanization rate and eco-
nomic output levels will all result in higher levels of peak load. This is 
because the increase of regional economic growth (Chaturvedi et al., 
2014), the rise of urbanization rate (Mirasgedis et al., 2007) and 
expansion of population (Allen et al., 2016) will all push up the regional 
power load (Waite et al., 2017). The peak load is also significantly 
negatively related to economic shares of the provincial secondary in-
dustry. Previous studies have found that industrial structure will have an 
impact on power load demand, and the proportion of the secondary 
industry is negatively correlated with the peak load (Waite et al., 2017). 
The power load can be divided into two parts, which include the base 
load and the peak load. The base load is mainly composed of electricity 
consumption from heavy industry and light industry, while the change 
of peak load depends on the electricity consumption from the tertiary 
sector and residential sector. Therefore, The reduction of the output 
share of the secondary industry will increase the share of the tertiary 
industry, thus leading to the increase of peak load (Wang et al., 2020). 

Economic development can stimulate the growth of electricity con-
sumption, while the economic development also relies greatly on the 
energy consumption. If there are endogenous problems with GDP, the 
estimated parameter will be biased and inconsistent. To test the exis-
tence of this endogeneity problem, we followed the suggestions from 
Reed and Robert (2015) and take the first-order lag term of GDP as an 
instrumental variable (IV), and then use a Two-Stage Least Square 
(TSLS) estimation method. The results are shown in Table 5. As can be 
seen from the regression results comparison between model (1) and 
model (2), we can see that the estimated two coefficients of GDP are the 
same, no matter whether the fixed effects of time are controlled or not. 
Moreover, the estimated coefficients of maximum temperature are also 
very close to the result of Model 4 in Table 3, indicating the robustness of 
our estimation results. All these results support the non-existence of the 
endogenous effect. This is also consistent with the conclusions from 
Jamaaluddin et al. (2019), who stated that peak load only lasts for a very 
short time and cannot significantly affect the explanatory variables as 
annual electricity consumption does. 

4.2. The regional differences of the load-temperature responses 

As pointed out by Waite et al. (2017), the regional heterogeneity can 
affect the responses of electricity load to temperature changes. The 

electricity load in economically developed countries and regions tends 

Table 2 
Statistical description of variables.  

Variable Unit Mean Std. dev Min Max 

PL GW 16.49 16.84 0.04 100.40 
T ◦C 35.73 3.14 24.78 40.95 
SR % 45.26 8.29 18.63 61.48 
UR % 48.33 16.27 18.56 89.60 
GDP Trillion yuan 1.00 1.08 0.01 7.04 
POP Million persons 42.47 26.98 2.52 113.50 

Notes: The data of GDP in this table are expressed in the 1998 prices. 

Table 3 
National regression results of load-temperature responses.  

Variables (1) (2) (3) (4) 

PL PL PL PL 

T 0.456*** 0.455** 0.497** 0.385*** 
(3.022) (2.633) (2.582) (3.171) 

POP 1.960*** 2.137*** 2.012*** 0.415** 
(7.358) (8.861) (10.218) (2.256) 

UR  0.861*** 1.000*** 0.370***  
(2.896) (3.185) (3.408) 

SR   − 0.309* − 0.178**   
(-1.912) (-2.215) 

GDP    12.233***    
(10.528) 

Constant − 88.986*** − 127.514*** − 115.771*** − 34.183*** 
(-6.888) (-6.329) (-7.340) (-3.346) 

Observations 651 651 651 651 
R-squared 0.761 0.804 0.814 0.943 
Number of id 31 31 31 31 
Province FE YES YES YES YES 
Year FE YES YES YES YES 

Robust t-statistics in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. 

Table 4 
The responses of peak load to maximum temperature changes in different 
studies.  

Study region period methods results 

Burillo et al. 
(2017) 

Los Angeles, 
USA 

2015–2016 Spatial error 
model 

0.39 GW/ 
◦C 

Burillo et al. 
(2017) 

Phoenix, USA 2015–2016 Spatial error 
model 

0.27 GW/ 
◦C 

Wenz et al. 
(2017) 

Spain 2006–2012 Piecewise OLS 
model 

0.44 GW/ 
◦C 

This study China 1998–2018 Two-way FE 
model 

0.38 GW/ 
◦C  

Table 5 
Robustness test results by using IV instrumental variables.  

Variables (1) (2) 

PL PL 

GDP 12.606*** 12.606*** 
(26.093) (27.229) 

T 0.341*** 0.437*** 
(3.130) (3.693) 

Constant − 30.374*** − 51.680*** 
(-6.149) (-8.565) 

Observations 620 620 
R-squared 0.973 0.975 
Province FE YES YES 
Year FE NO YES 
Control Variable YES YES 

Robust z-statistics in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. 

5 This data is compared to the historical average value of the peak power load 
from 1998 to 2018. 
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to have larger responses to the temperature changes than that in the 
poor regions. With the introduction of the reform and opening-up policy 
in 1978, there are big economic development gaps between the eastern 
coastal provinces and inland provinces (central region and west re-
gion).6 To analyze the regional differences of the climate change impacts 
on peak load, we have estimated the load-temperature responses for the 
three regions in China individually, see Table 6. 7 

As can be seen from Table 6, there are significant differences in the 
impacts of climate change on the peak load in different regions. In the 
Eastern China Region, characterized by higher economic levels, a 1 ◦C 
rise in the maximum temperature will significantly result in a 0.708 GW 
increase in the peak load. However, the amount of the climate change 
impacts will rapidly be reduced to 0.116 GW in the less developed 
Central China Region, and the impacts also become insignificant. As for 
the economically underdeveloped Western China Region, the maximum 
temperature is found to have little effect on the peak load. The differ-
ences in the impacts of temperature rise on peak load among regions can 
be partly explained by the different economic development levels among 
regions. On the one hand, the air conditioning ownership in the 
economically developed eastern China region is higher than that in the 
economically underdeveloped central and western China regions. In 
2018, the air conditioning ownership per capita in the eastern China 
region is 1.67 times that in the central China region and 2.78 times that 
in the western China region. On the other hand, the disposable income 
per capita in the eastern China region is higher. In 2018, the disposable 
income per capita in the eastern China region is 1.62 times that of the 
central China region and 1.70 times that of the western China region. 
The higher disposable income allows residents to bear a higher 

electricity charge level, so the utilization rate of air conditioning will be 
higher than that in the central and western China regions (Rivers and 
Shaffer, 2020). Therefore, more attention should be paid to the eco-
nomic developed regions in coping with the peak load impacts from 
climate change. 

4.3. The channels from temperature changes to peak load variations 

The development of air conditioning has increased the intensity and 
frequency of peak load events, which will lead to significant investment 
in power generation and transmission infrastructure (Biardeau et al., 
2019; Davis and Gertler, 2015). China is the biggest owner of air con-
ditioners in the world, whose domestic sales account for 66% of the 
world in 2018 (SIC, 2018). Previous studies have shown that the influ-
ence of temperature on the peak load is likely to be realized through the 
usages of air conditioning. Biardeau et al. (2019) found that the tem-
perature rise will increase the use of air conditioning, which will push up 
peak load demand. In an empirical study of Mexico, Davis and Gertler 
(2015) found that the temperature-load response function was signifi-
cantly steeper for the households living in states with higher air condi-
tioning penetration levels. Following the approach of Baron and Kenny 
(1999), this study analyzes the mediating effects of the total number of 
air conditioners in the load-temperature responses, see equations (2)– 
(4). 

PLit = b0 + b1Tit +
∑K

k=1
b2kXkit + αi + θt + εit (2)  

ACit = b0 + b1Tit +
∑K

k=1
b2kXkit + αi + θt + εit (3)  

PLit = b0 + b1Tit + b2ACit +
∑K

k=1
b3kXkit + αi + θt + εit (4)  

Where ACit represents the total number of air conditioners in province i 
in year t. The other variable definitions are shown in Table 1. 

The regression results of the mediating effects analysis are shown in 
Table 7. Model (1) presents the business-as-usual results used for com-
parison. Model (2) shows the impacts of maximum temperatures on the 
total number of air conditioners, while Model (3) presents the influences 
of both maximum temperatures and air conditioner quantity on the peak 
loads. As seen from the results of Model (2), the maximum temperature 

Table 6 
Regional differences of the peak load-temperature responses.  

Variables (1) (2) (3) 

Eastern China 
region 

Central China 
region 

Western China 
region 

T 0.708*** 0.116 − 0.001 
(4.455) (0.668) (-0.008) 

POP 0.399** − 0.565 0.345 
(2.644) (-1.297) (0.636) 

UR 0.431* 0.703*** − 0.064 
(2.052) (4.254) (-0.221) 

SR − 0.242 − 0.198 − 0.282** 
(-1.180) (-1.671) (-2.626) 

GDP 13.201*** 10.661** 8.790*** 
(10.839) (2.580) (6.012) 

Constant − 51.033*** 11.791 4.415 
(-3.600) (0.611) (0.331) 

Observations 252 189 210 
R-squared 0.968 0.924 0.896 
Number of id 12 9 10 
Province FE YES YES YES 
Year FE YES YES YES 

Robust t-statistics in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. 

Table 7 
The mediating effects of air conditioners on the load-temperature responses.  

Variables (1) (2) (3) 

PL AC PL 

T 0.385*** 0.248*** 0.269** 
(3.171) (2.864) (2.344) 

AC   0.467***   
(3.760) 

Constant − 34.183*** − 28.932*** − 20.658* 
(-3.346) (-3.562) (-1.987) 

Observations 651 651 651 
R-squared 0.943 0.902 0.950 
Province FE YES YES YES 
Year FE YES YES YES 
Control Variable YES YES YES 

Notes: Robust t-statistics in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. 

6 In 2018, the GDP per capita of the three regions was 56300 yuan (Eastern 
China region), 34800 yuan (Central China region) and 33200 yuan (Western 
China region) respectively.  

7 According to the National Development and Reform Commission (NDRC) in 
China, China is divided into eastern region, central region and western region 
according to the geographical locations. The Eastern China region has 12 
provinces, autonomous regions and municipalities, including Beijing, Tianjin, 
Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, 
Guangxi and Hainan. The Central China region has nine provinces and auton-
omous regions, namely Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, 
Jiangxi, Henan, Hubei and Hunan. The Western China region comprises nine 
provinces and autonomous regions, including Sichuan, Guizhou, Yunnan, Tibet, 
Shaanxi, Gansu, Ningxia, Qinghai and Xinjiang. 
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has a significantly positive impact on the total number of installed air 
conditioners. Comparing the results of Model (1) with that from Model 
(3), we can see that the impacts of maximum temperatures will reduce 
from 0.385 GW/◦C to 0.269 GW/◦C if the total number of air condi-
tioners is added to the regression model. Moreover, the significance 
level of the estimated coefficients also decreases from 1% to 5%. 
Combining the estimated results of these three models, we can say that 
the number of air conditioners is an important channel to materialize the 
impacts from temperature change to peak load. This is also consistent 
with the conclusions of Sieber (2013), who have found that extreme hot 
weather events themselves will also contribute to the increase of peak 
load. Forzieri et al. (2018) also found that extreme weather events, such 
as heat wave and drought, will have a significant impact on peak load. 

4.4. The projections of future peak load and required infrastructure 
investment 

In this section, the estimated load-temperature response functions 
are employed to forecast the peak load and the required infrastructure 
investment in the future. Four scenarios are developed based on the SSPs 
from the sixth international coupling mode comparison plan (CMIP6) 
and the RCPs from Vuuren et al. (2011), see Table 8. Four combined 
SSP-RCP scenarios are developed based on the data availability. All the 
data of input variables are drawn from previous studies, including the 
maximum temperature (Chen et al., 2021), population (Huang et al., 
2019), urbanization rate (Jing et al., 2020), the economic share of sec-
ondary industry and GDP (Jiang et al., 2017). 

Using the estimated temperature-load response functions, we first 
analyze how the national peak load will change in the rest of 21st cen-
tury, see Fig. 2. We can see that the national peak load is the highest 
(6816 GW) under the SSP 5-RCP 8.5 scenario by the end of this century, 
while it is the lowest (3808 GW) under the SSP4-RCP 6.0 scenario. 
Moreover, the socioeconomic variables are found to have larger impacts 
on the peak load than the temperatures, this can be evidenced by the fact 
that the peak load under SSP1-RCP 2.6 is higher than that under SSP4- 
RCP 6.0. The increased peak load from climate change will cause 
additional investment demand for electricity supply infrastructure, the 
amount of which will rely on the technology choices greatly. Although it 
is difficult to predict the accurate share of different technologies due to 
the significant uncertainties, the wind generators and solar generators 
are expected to be deployed at a large scale in the future to meet the 
Carbon Neutrality Target set by the Chinese government. Therefore, this 
study only considers these two technologies in estimating the needed 
infrastructure investment. To meet the projected peak load demand, the 
annual investment will range from 298 to 617 billion yuan for the wind 
generators, and from 275 to 570 billion yuan for the solar generators. 8 

The wide range of the estimated investment cost indicates that different 
climate change mitigation policies and socio-economic development 
paths will have a significant impact on the infrastructure investment. 

This study has also forecasted the annual peak load when only the 
impacts of temperature changes are considered, see Fig. 3. We can see 
that the average increase in the peak load is about 399 GW under the 
four RCPs by the end of this century. The trajectory of RCP 8.5 will 
generally have the highest increase of peak load, while the path of RCP 
2.6 will have the smallest rise. The peak load shows a significant positive 
relationship with the temperature increase under different RCPs. This 
also indicates that more effective climate change mitigation policies 
would significantly reduce the impacts of temperature on peak load. 

Furthermore, we have compared our estimation results with that 
from previous studies, see Table 9. We can see that our estimation results 

are much bigger than that of other countries. This is because most pre-
vious studies usually only consider the increase of peak load caused by 
the temperature changes, while this study considers both the changes of 
climate variables and socioeconomic variables. This can also be sup-
ported by the results from China. The growth rate of China’s peak load is 
between 37% and 41% when only the climate change variables are 
considered, while the growth rate will be 280%–580% if both two types 
of variables are modeled. This shows that the growth rate of China’s 
peak load depends largely on the level of economic and social 
development. 

In addition, we have also investigated the regional differences of the 
peak load projections under different scenarios, see Fig. 4. To save space, 
only the years of 2030, 2050 and 2100 are shown in this figure. From the 
perspective of the spatial distributions of the peak loads, we can see that 
the provinces with relatively higher peak loads are mostly located in the 
Eastern China Region, followed by the loads of provinces in the Central 
China Region. The peak loads in the Western China Region are the 
lowest. Moreover, these conclusions are consistent no matter which 
scenario is selected. 

5. Conclusions and policy implications 

5.1. Conclusions 

With the increasing electrification rate, electricity consumption is 
becoming more sensitive to the temperature variations from climate 
change. Peak load is a key input parameter for the power system plan-
ning, and a biased prediction can result in serious electricity outage 
events. To provide necessary guidance for the peak load projection in the 
future, this study first employs a fixed-effects panel data model to esti-
mate the response functions of peak load to temperature changes from 
1998 to 2018. Then, the heterogeneity of load-temperature responses is 
investigated for regions with different income levels. After that, the 
mediating effects of air conditioner penetrations are tested for the re-
sponses of peak load to climate change. Finally, the peak load and 
required infrastructure investment in the future are forecasted under 
different scenarios. During this process, we have obtained the following 
major conclusions.  

(1) The annual maximum temperature is found to have significant 
positive impacts on the provincial peak load in China. A 1 ◦C 
increase in the maximum temperature will increase the peak load 
by an average of 0.385 GW. Moreover, significant heterogeneity 
exists among different regions with different income levels. For 
example, every 1 ◦C increase of the maximum temperature will 
lead to an increase of 0.708 GW of peak load in the rich Eastern 
China Region, while impacts will be reduced to 0.116 GW in the 
less developed Central China Region. 

(2) Air conditioner penetrations are tested to have significant medi-
ating effects to materialize the impacts from climate change to 
peak load. The annual maximum temperature rises by 1 ◦C will 
increase the total provincial ownerships of air conditioners by 
0.248 million, and 1 million increases of the total number of air 
conditioners will raise the peak load by 0.467 GW. Moreover, if 
the mediating effects of air conditioning are eliminated, the in-
tensity and significance of the temperature effects on peak load 
will be greatly reduced.  

(3) China’s national peak load is forecasted to increase substantially 
at the end of this century, and an additional investment of 
275–617 billion yuan per year will be needed to ensure a reliable 

8 The cost projection of wind power generation projects and photovoltaic 
power generation projects are based on the China Electric Power Technology 
and Economy Development Research Report 2019, and the operating reserve 
share of installed capacity is set as 15% based on Chen et al. (2021). 
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supply. Using the estimated load-temperature response functions, 
the national peak load is expected to reach between 3807 GW and 
6815 GW in 2100 under different climate and socio-economic 
scenarios. Moreover, the impacts of temperature rise can only 
contribute to 20% of the peak load increase, while the majority of 
load increase is affected by the changes of socioeconomic factors 
in China. In addition, the spatial distributions of the load will 
remain the same with the current status, and the Eastern China 
Region will still have the highest peak load. 

5.2. Policy implications 

Based on the above conclusions, this paper proposes the following 
policy implications. 

First, since the climate change has significant impacts on the peak 
load demand and the implementation of different mitigation policies 
will also change its pathways, it is necessary for the power system 
planners to integrate the climate change and relevant policies into the 
long-term plan. For example, a dynamic revision mechanism can be 
established to integrate the impacts of climate change to the power 
system planning. 

Second, the increasing penetration and usage of air conditioners are 
found to be a significant channel for the peak load to respond to climate 
changes. Moreover, the load from air conditioners can account for as 
large as 50% of the peak load during hot summers,9 posing great chal-
lenges to the safe power system operation. Therefore, it is necessary to 
promote technological progress to improve the efficiencies of air con-
ditioners, such as enhancing the house insulation, using cold roofs and 
deploying passive cooling systems (Biardeau et al., 2019). In addition, it 
is also important to develop wise demand response programs to guide 
the consumer behavior so as to reduce the peak load. 

Third, it is good to take advantage of the electricity market to guide 
the optimal investment and plan in response to the climate changes. 
Electricity market can provide good signals of how different consumers 
should respond to the changes of climate and prices. Moreover, the 
signals from electricity market can motivate better resource allocation 
with consideration of the provincial differences regarding the climate 
change and load responses, thus achieving larger levels of social welfare. 

Although this study has answered several important questions 
related to the responses of peak load to climate change in China, there 
are still several issues to be addressed in further studies. The pathways of 
future peak load demand can be affected by the important climate 
change policies, so it is necessary to dynamically change and revise the 
forecasting results when shocks of new policies appear. Moreover, data 
with smaller spatial granularity can be used to forecast the future peak 
load more accurately, such as the city level data and county level data. 
Last, the accuracy of the estimated results may be affected by the exis-
tence of endogeneity problem (missing variables), which can be further 
improved in the future. All these improvements can contribute to a 
better understanding of impacts of climate change on the peak load. 
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Table 8 
Explanations of different scenarios use in the load projection.  

Scenario name SSP1-RCP 2.6 SSP2-RCP 4.5 SSP4-RCP 6.0 SSP5-RCP 8.5 

Radiative forcing 2.6 W⋅m− 2  4.5 W⋅m− 2  6.0 W⋅m− 2  8.5 W⋅m− 2  

Population growth Moderate growth followed by 
decline 

Moderate growth followed by 
decline 

High-speed growth Moderate growth followed by 
decline 

Urbanization All regions are rapidly urbanized All regions are Moderate urbanized Low-and middle-income are rapidly 
urbanized 

All regions are rapidly 
urbanized 

Total factor 
productivity 

Moderate growth, high-speed 
convergence 

Moderate growth, moderate 
convergence 

Moderate growth, low convergence High growth, high convergence 

Economic 
development 

High-speed growth Medium growth Medium growth High-speed growth  

Fig. 2. The projected national peak load of China under different scenarios.  

Fig. 3. The prediction of the temperature impacts on peak load under 
different RCPs. 

9 The data is drawn from http://www.bj.sgcc.com.cn/. 
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